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Euler’s Equations in a Lagrangian Frame

The evolution of the particles of a compressible fluid/solid in a Lagrangian reference frame is
governed by the following system of differential equations:

Euler’s Equations

Momentum Conservation: ρ
d~v

dt
= ∇ · σ

Mass Conservation:
1

ρ

dρ

dt
= −∇ · ~v

Energy Conservation: ρ
de

dt
= σ : ∇~v

Equation of State: p = EOS(e, ρ)

Equation of Motion:
d~x

dt
= ~v

Kinematics

~x – position
~v – velocity

Thermodynamics

ρ – density
e – internal energy

Stress Tensor

σ = −pI + µε(~v) + s

p – pressure
µ – artificial viscosity coef.
s – stress deviator tensor

Time derivatives are along particle trajectories
Space derivatives are with respect to a fixed coordinate system
Domain: Ω(t) = {~x(t)}; Total Energy: E(t) =

R
Ω(t)(ρ|~v |

2/2 + ρe)
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Overview of Lagrangian Methods

Staggered-grid hydro (SGH) methods
M. Wilkins, Methods in Computational Physics, Calculation of Elastic-Plastic Flow,
Academic Press, 1964
E. Caramana and M. Shashkov, Elimination of Artificial Grid Distortion and Hourglass-Type
Motions by Means of Lagrangian Subzonal Masses and Pressures, J. Comput. Phys., 142
(2), pp. 521–561, 1998
E. Caramana, D. Burton, M. Shashkov and P. Whalen, The Construction of Compatible
Hydrodynamics Algorithms Utilizing Conservation of Total Energy, J. Comput. Phys., 146,
pp. 227–262, 1998

Finite element based methods
G. Scovazzi, M. Christon, T. Hughes and J. Shadid, Stabilized shock hydrodynamics: I. A
Lagrangian method, Comput. Methods Appl. Mech. Engrg., 196 (4-6), pp. 923–966, 2007.
A. Barlow, A compatible finite element multi-material ALE hydrodynamics algorithm, Int. J.
Numer. Meth. Fluids, 56, pp. 953–964, 2008.
G. Scovazzi, E. Love and M. Shashkov, Multi-Scale Lagrangian Shock Hydrodynamics on
Q1/P0 finite elements: Theoretical framework and two-dimensional computations, Comput.
Methods Appl. Mech. Engrg., 197, pp. 1056–1079, 2008

Cell-centered methods
B. Depres and C. Mazeran, Lagrangian Gas Dynamics in Two Dimensions and Lagrangian
systems, Arch. Rational Mech. Anal. 178 (2005), pp. 1781–1824, 2005.
P.-H. Maire, R. Abgrall, J. Breil and J. Ovadia, A cell-centered Lagrangian scheme for
compressible flow problems, SIAM J. Sci. Comput., 29 (4), pp. 1781–1824, 2007.
P.-H. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible
fluid flows on unstructured meshes, J. Comput. Phys., 228 (7), pp. 2391–2425, 2009.
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Lagrangian Mesh Motion

Semi-discrete Lagrangian methods are based on a moving computational mesh

−→

The mesh zones are reconstructed based on particle locations, thus defining the moved mesh
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The reconstruction has an inherent geometric error with respect to the equation of motion
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Why Curvilinear Elements?

Deform an initial Cartesian mesh with the exact solution

Exact motion: Sedov blast wave
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Exact motion: Taylor–Green vortex

High order curvilinear finite elements use additional particle degrees of freedom to more
accurately represent the initial and the naturally developed curvature in the problem
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Position

Finite element zones are defined by a parametric mapping Φz from a reference zone (the unit

square in 2D): Ωz (t) = {~x = Φz (~̂x , t) : ~̂x ∈ Ω̂z}.
Reference Space (Ω̂z )
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The position space is specified by a set of nodal FEM basis functions {η̂i} on Ω̂z .

η̂i ∈ Q1 η̂i ∈ Q2

The parametric mapping is then given by Φz (~̂x , t) =
P

i xz,i (t) η̂i (~̂x)

The position vector x(t) specifies the particle coordinates corresponding to the degrees
of freedom in the {η̂i}-defined finite element space
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Strong Mass Conservation

For a bijective mapping, the Jacobian matrix

Jz = ∇
~̂x
Φz or (Jz )ij =

∂xj

∂x̂i

is non-singular. In general, Jz is a function that varies inside the zone.

Determinant |Jz (t)| can be viewed as local volume since Vz (t) =
R
Ω̂z
|Jz (t)|.

a

c

x

b

d

|Jz (a)| = 2Sabd

|Jz (x)| = Sabcd

In the Lagrangian description, the total mass of a zone is constant for all time:

dmz

dt
= 0, mz =

Z
Ωz (t)

ρ

The strong mass conservation principle takes this to the extreme by requiring thatZ
Ω′(t)

ρ(t) =

Z
Ω′(t0)

ρ(t0) −→
Z

Ω̂′
ρ̂(t)|J(t)| =

Z
Ω̂′
ρ̂(t0)|J(t0)|

for any Ω′(t0) ⊂ Ω(t0). This leads to the pointwise equality ρ(t)|Jz (t)| = ρ(t0)|Jz (t0)|

Generalization of SGH zonal mass conservation

ρ̂(t) is a non-polynomial function closely related to |J(t)|
Density can be eliminated from the semi-discrete equations!
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Kinematics

Velocity is discretized in the same space as the position:

~v(~x , t) ≈
X

j

vj (t) ~wj

The velocity basis functions satisfy

~̂wj = ~wj ◦ Φz ∈ span{η̂i}dim

Let w(~x , t) be a column vector of the velocity basis functions,
i.e. wj (~x , t) = ~wj (~x , t). Then

~v(~x , t) ≈ wTv

Therefore, the semi-discrete equation of motion reads simply:

dx

dt
= v

Since ~̂wj is independent of time, ~wj moves with the mesh and

dw

dt
= 0

Q2 kinematic degrees of
freedom on the reference

element

Q2 finite element basis
function in physical space
with degrees of freedom
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Conservation of Momentum

Weak formulation of the momentum conservation equation:

ρ
d~v

dt
= ∇ · σ −→

Z
Ω(t)

ρ
d~v

dt
· ~wj = −

Z
Ω(t)

σ : ∇~wj .

(the boundary integral is usually zero due to boundary conditions)

Since the velocity basis functions move with the mesh, we have

d~v

dt
≈

d

dt
(wTv) = wT dv

dt

This gives us the semi-discrete momentum conservation equation:

Mv
dv

dt
= −

Z
Ω
σ : ∇w

where the velocity mass matrix is defined by the integral

Mv =

Z
Ω
ρwwT

By strong mass conservation, the mass matrix is constant in time!

Mv(t)ij =

Z
Ω(t)

ρ~wi · ~wj =

Z
Ω̂(t)

ρ̂|J(t)|~̂wi · ~̂wj = Mv(t0)ij so
dMv

dt
= 0
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Connection to Classical SGH

Connection to Nodal Mass

The velocity mass matrix is computed by
assembling individual zonal mass matrices

Mv = Assemble(Mz ).

Each zonal mass matrix is block diagonal

Mz =

Z
Ωz

ρwwT =

„
Mxx

z 0
0 Myy

z

«
.

Using a bilinear velocity basis and applying
single point quadrature and mass lumping
to the zonal mass matrix yields

Mxx
z = Myy

z =
ρzVz

16

0BB@
4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

1CCA .

This is equivalent to defining nodal masses
as 1

4
the mass of the surrounding zonal

masses.

Connection to SGH Gradient Operator

Consider the case of piecewise constant
stresses, bilinear velocities and single point
quadrature Z

Ωz

pI : ∇w =

pz

2

„
y2 − y4, y3 − y1, y4 − y2, y1 − y3

x4 − x2, x1 − x3, x2 − x4, x3 − x1

«
.

The resulting ”corner forces” are identical
to the Wilkins and compatible hydro
gradient operators on general quad grids.
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Thermodynamics

Internal energy is approximated with a set of discontinuous basis
functions φ:

e(~x , t) ≈ φTe

Weak formulation of the energy conservation equation for each zoneZ
Ωz (t)

„
ρ
de

dt

«
φj =

Z
Ωz (t)

(σ : ∇~v)φj

Since the basis functions move with the mesh, we have

dφ

dt
= 0 −→

de

dt
≈ φT de

dt

This gives us the semi-discrete energy conservation equation:

Me
de

dt
=

Z
Ω
(σ : ∇~v) φ

where the constant energy mass matrix is defined by the integral

Me =

Z
Ω
ρφφT

Q1 thermodynamics
degrees of freedom on the

reference element

Discontinuous Q1 finite
element function with
degrees of freedom

Since the FEM space is discontinuous, Me is block-diagonal and the above equation reduces to
separate equations local to each zone.
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Connection to Classical SGH

Consider the special case of piece wise constant internal energies, pressures and densities. For
each zone, our general high order semi-discrete energy conservation law reduces to the form

Me
de

dt
=

Z
Ω
(σ : ∇~v) φ 7→ mz

dez

dt
= fz · vz

Connection to Compatible Hydro

Our method can be viewed as a high
order generalization of the energy
conserving compatible formulation 1 by
noting that

fz =

Z
Ωz

pI : ∇w,

which is a collection of corner forces.
The total change in energy is therefore
given by the inner product

fz · vz =
4X

j=1

~fj · ~vj

Connection to Wilkins Hydro

Assuming piecewise constant stresses, the right
hand side is

fz · vz = pz

„Z
Ωz

I : ∇w

«
· vz ≈ pz

Z
Ωz

∇ · ~v .

Using the geometric conservation law, this last
term is equivalent to

pz

Z
Ωz

∇ · ~v = pz
dVz

dt
.

This is the so called ”pdV” approach which has
the potential to preserve entropy for adiabatic
flows.

1E. Caramana et. al., ”The Construction of Compatible
Hydrodynamics Algorithms Utilizing Conservation of Total
Energy”, J. Comput. Phys., 1998
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Stress: Tensor Artificial Viscosity

We introduce artificial viscosity by adding an artificial stress tensor σa to the stress tensor σ:

σ(~x) = −p(~x)I + σa(~x).

Note that, in general, both the pressure and the artificial stress vary inside a zone.

We have implemented the following options:

σa = µ~s∇~v σa = µ~s ε(~v) σa = µ~sk
λk~sk ⊗~sk σa =

P
k µ~sk

λk~sk ⊗~sk

ε(~v) is the symmetrized velocity gradient with eigenvalues {λk} and eigenvectors {~sk}, i.e.

ε(~v) =
1

2
(∇~v + ~v∇) =

X
k

λk~sk ⊗~sk , ~si ·~sj = δij , λ1 ≤ · · · ≤ λd

Directional viscosity coefficient:

µ~s = µ~s(~x) ≡ ρ
˘
q2`

2
~s |∆~s~v |+ q1ψ0ψ1 ~̀scs

¯
q1, q2 – linear/quadratic term scaling; cs – speed of sound; ~̀s = ~̀s(~x) – directional length scale

Directional measure of compression:

∆~s~v =
~s · ∇~v ·~s
~s ·~s

=
~s · ε(~v) ·~s
~s ·~s

»
=

d(~v ·~s)
d~s

– Compression switch, vorticity measure:

ψ1 =

(
1, ∆~s~v < 0

0, ∆~s~v ≥ 0
, ψ0 =

|∇ · ~v |
‖∇~v‖

~s1 is the direction of maximal compression: min|~s|=1 ∆~s~v = min|~s|=1~s · ε(~v) ·~s = λ1 = ∆~s1~v .
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Stress: Directional Length Scale

We define the length scale in direction ~s relative to an initial length scale field `0(~x) on Ω(t0).

~x(t0 )

Ω(t0) → Ω(t)
−−−−−−−−−−−→ ~x ~s ~x ~s

Using the Jacobian J of the mapping Ω̂ → Ω(t) the two versions can be written as:

~̀s(~x) = `0
|~s|

|J−1~s| ~̀s(~x) = `0
|J>~s|
|~s|

We have the following options to define `0(~x):

global constant, e.g. in 2D `0 = (tot. area/num. of zones)1/2 (meshes close to uniform)

smoothed version of a local mesh size function (meshes with local refinement)

smoothed or constant function based on x-direction mesh size (1D problems)
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Stress: Elastic-Plastic Deformation

To model elastic-plastic solids, we add a stress deviator tensor s to the total stress tensor σ:

σ(~x) = −p(~x)I + σa(~x) + s(~x).

As with the other stress terms, the stress deviator tensor varies inside a zone.
We utilize an incremental stress/strain relation and compute the Jaumann objective stress rate at
each quadrature point as

ds

dt
= g(s, ~v , µs) ≡ 2µs

„
1

2
(∇~v + ~v∇)−

1

3
∇ · ~v

«
+

s(∇~v − ~v∇)− (∇~v − ~v∇)s

2
.

We use the Von Mises yield condition and a simple ”radial-return” method for calculating
transition to plastic flow:

f (s,Y ) =

s
2

3

Y 2

Tr(s2)
, if : f > 1, then : f 7→ 1; s 7→ fs.

Each component of the stress rate is discretized using
a density weighted projection onto the discontinous
internal energy basis, φ.

Me
ds

dt
= g ≡

Z
Ω
(ρg) φ

Therefore, we only store the stress rate at the energy
degrees of freedom instead of each quadrature point.

Q1 stress rate degrees of freedom on
the reference element
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Generalized Corner Forces

The computational kernel of our
method is the evaluation of the
Generalized Corner Force matrix

Fij =

Z
Ω(t)

(σ : ∇~wi )φj

Semi-discrete finite element method

Momentum Conservation: Mv
dv

dt
= −F · 1

Energy Conservation: Me
de

dt
= FT · v

Equation of Motion:
dx

dt
= v

Stress Deviator Rate: Me
ds

dt
= g

F can be assembled locally from zonal corner force matrices Fz .

Generalized SGH “corner forces”: Fz is 8x1 for Q1-Q0, 18x4 for Q2-Q1, 32x9 for Q3-Q2 (2D).

Locally FLOP-intensive evaluation of Fz requires high order quadrature {(αk , ~̂qk )}

(Fz )ij =

Z
Ωz (t)

(σ : ∇~wi )φj ≈
X

k

αk σ̂(~̂qk ) : J−1
z (~̂qk )∇̂~̂wi (~̂qk ) φ̂j (~̂qk )|Jz (~̂qk )|

Pressure is a function computed through the EOS in {~̂qk} (“sub-zonal pressure”).

By strong mass conservation, the above algorithm gives exact semi-discrete energy conservation
for any choice of velocity and energy spaces (including continuous energy).

dE

dt
=

d

dt

 Z
Ω(t)

ρ
|~v |2

2
+ ρe

!
=

d

dt

„
v ·Mv · v

2
+ 1 ·Me · e

«
= v ·Mv ·

dv

dt
+ 1 ·Me ·

de

dt
= −v · F · 1 + 1 · FT · v = 0.

Any “compatible hydro” method can be put into this framework for appropriate Mv, Me and F.

Rieben et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 16 / 29



Generalized Corner Forces

The computational kernel of our
method is the evaluation of the
Generalized Corner Force matrix

Fij =

Z
Ω(t)

(σ : ∇~wi )φj

Semi-discrete finite element method

Momentum Conservation: Mv
dv

dt
= −F · 1

Energy Conservation: Me
de

dt
= FT · v

Equation of Motion:
dx

dt
= v

Stress Deviator Rate: Me
ds

dt
= g

By strong mass conservation, the above algorithm gives exact semi-discrete energy conservation
for any choice of velocity and energy spaces (including continuous energy).

dE

dt
=

d

dt

 Z
Ω(t)

ρ
|~v |2

2
+ ρe

!
=

d

dt

„
v ·Mv · v

2
+ 1 ·Me · e

«
= v ·Mv ·

dv

dt
+ 1 ·Me ·

de

dt
= −v · F · 1 + 1 · FT · v = 0.

Any “compatible hydro” method can be put into this framework for appropriate Mv, Me and F.

Rieben et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 16 / 29



Time Integration

Let Y = (v; e; x; s). Then the semi-discrete equations can be written in the form:

dY

dt
= F(Y , t)

where

F(Y , t) =

0BB@
Fv (v, e, x, s)
Fe(v, e, x, s)
Fx (v, e, x, s)
Fs(v, e, x, s)

1CCA =

0BB@
−Mv

−1F · 1
Me

−1F> · v
v

Me
−1g

1CCA
Standard high order time integration techniques (e.g. explicit Runge-Kutta methods) can be
applied to this system of nonlinear ODEs.

The standard methods may need modifications to ensure:

Numerical stability of the scheme.

Exact energy conservation.

Two of the options we use are:

RK2Avg – midpoint RK2 method, modified for exact energy conservation.

RK4 – standard fourth order Runge-Kutta method.
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The RK2Avg Scheme

The midpoint Runge-Kutta second order scheme (RK2) reads

Y n+ 1
2 = Y n +

∆t

2
F(Y n, tn)

Y n+1 = Y n + ∆t F(Y n+ 1
2 , tn+ 1

2 )

We modify it for stability and energy conservation as follows (RK2Avg):

vn+ 1
2 = vn − (∆t/2)Mv

−1Fn · 1

en+ 1
2 = en + (∆t/2)Me

−1(Fn)> · vn+ 1
2

xn+ 1
2 = xn + (∆t/2) vn+ 1

2

sn+ 1
2 = sn + (∆t/2)Me

−1gn

vn+1 = vn −∆t Mv
−1Fn+ 1

2 · 1

en+1 = en + ∆t Me
−1(Fn+ 1

2 )> · v̄n+ 1
2

xn+1 = xn + ∆t v̄n+ 1
2

sn+1 = sn + ∆t Me
−1gn+ 1

2

Here Fn = F(Y n) and v̄n+ 1
2 = (vn + vn+1)/2. The change in kinetic (KE) and internal (IE)

energy is

KEn+1 − KEn = (vn+1 − vn) ·Mv · v̄n+ 1
2 = −∆t (Fn+ 1

2 · 1) · v̄n+ 1
2

IEn+1 − IEn = 1 ·Me · (en+1 − en) = ∆t 1 · (Fn+ 1
2 )> · v̄n+ 1

2 ) .

Therefore the discrete total energy is preserved: KEn+1 + IEn+1 = KEn + IEn.
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Example: 1D Elastic Wave with Non-Linear EOS

We consider a polynomial EOS of the form:

p(µ, e) = µ+ µ2 + µ3 + (1 + µ+ µ2)
e

ρ0
; µ ≡ (

ρ

ρ0
− 1)

Simple 1D elastic wave propgation
with constant shear modulus

Test self convergence using time
refinement

No artificial viscosity is used

Wall boundary conditions

Velocity is initialized with a
sinusoidal profile:

3.6 3.4 3.2 3.0 2.8 2.6
log10(∆t)

14

12

10

8

6

4

lo
g 1

0(
||~ v
−~
v h
||)

Elastic Wave with Non-Linear EOS

EulerAvg
RK2Avg
RK3SSP
RK4

Fit, m = 1.09
Fit, m = 2.02
Fit, m = 3.09
Fit, m = 4.05

Up to 4th order convergence in time for smooth elastic
problem with non-linear EOS.
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Example: 2D Taylor-Green Vortex

2D Taylor–Green vortex problem run to t = 0.75

Manufactured solution, no artificial viscosity is used

Q2-Q1-RK2Avg

32x32 structured grid

2.2 2.0 1.8 1.6 1.4 1.2
log10(h)

6

5

4

3

2

1

lo
g 1

0
(||
~ v
−~
v h
||)

Q2-Q1-RK2Avg Structured

L1 error

L2 error

L∞error

Fit, m = 2.05
Fit, m = 2.00
Fit, m = 1.79

2nd order convergence in space and time for smooth
problem.
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Example: 2D Taylor-Green Vortex

2D Taylor–Green vortex problem run to t = 0.75

Manufactured solution, no artificial viscosity is used

Q3-Q2-RK4

Unstructured grid

2.2 2.0 1.8 1.6 1.4 1.2
log10(h)

6

5

4

3

2

1

lo
g 1

0
(||
~ v
−~
v h
||)

Q3-Q2-RK4 Unstructured

L1 error

L2 error

L∞error

Fit, m = 3.08
Fit, m = 2.91
Fit, m = 2.51

3rd order convergence in space and time for smooth
problem.
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Example: 1D Elastic-Plastic Shock Wave

1D elastic-plastic shock wave test problem and analytic solution developed by G. Bazan at LLNL.

Problem consists of a solid flyer impacting a stationary solid target

Two shock state with an ”elastic precursor” followed by a second plastic shock

Verifies ability of a method to propagate an elastic-plastic shock

0.0 0.2 0.4 0.6 0.8 1.0
Distance

6.10
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6.20

6.25

6.30

6.35

6.40

D
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Exact
BLAST 500 Zones

0.0 0.2 0.4 0.6 0.8 1.0
Distance

0.00
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0.04

0.05

0.06

V
e
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ty

Exact
BLAST 500 Zones
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Example: 2D Sedov Blast Wave on Cartesian Grid

Density and Curvilinear Mesh, 20x20 zones

Symmetry is preserved

Exact Deformation

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Curved mesh gives better approximation
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Example: 2D Sedov Blast Wave on Cartesian Grid

Density Scatter Plots

Evaluated at 9 points/zone Converges to exact solution
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Example: 2D Sedov Blast Wave on Cartesian Grid

Density Scatter Plots

Evaluated at zone centers No undershoots and overshoots
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Example: Saltzman Piston

Density and mesh for Saltzman piston problem at t = 0.7, 0.8, 0.88, 0.92, 0.94, 0.96, 0.975,
0.985, 0.987 and 0.99 for a total of 6 bounces. (We can run this further.)

Each image is rescaled to an aspect ratio of 5 : 1.
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Example: 2D Single Material Rayleigh-Taylor Instability

Suggested by A. Barlow / D. Youngs, the material interface is flat. Initial velocity is divergence
free with a slip line at the interface, initial pressure is from hydrostatic equilibrium:

AMR-ALE with 4 Refinement Levels BLAST Q3Q2

The high order Lagrangian calculation is in good agreement with the AMR-ALE result.
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Example: 2D Single Material Rayleigh-Taylor Instability

Compressible fluids

Single material with a
smooth density gradient

Heavy fluid on top of a
light fluid

Initially perturbed
interface

Constant initial pressure

Small downward
acceleration

High order methods allow
the problem to run longer in
time and resolve more of the
flow features.

t = 6 t = 7 t = 8 t = 9

Q1-Q0:

Q2-Q1:

Q3-Q2:
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Conclusions

We have developed a general energy-conserving, high-order finite element discretization of the
Euler equations in a Lagrangian frame.

Benefits of our high-order discretization framework:

More accurate capturing of the geometrical features of a flow region using curvilinear zones.

Higher order spatial accuracy.

Support for general high order temporal discretizations for systems of ODEs.

Exact total energy conservation by construction.

Generality with respect to choice of kinematic and thermodynamic spaces.

No need for ad-hoc hourglass filters.

Sharper resolution of the shock front. Shocks can be represented within a single zone.

Substantial reduction in mesh imprinting.

We have shown just a small set of example results; see Part II for many more numerical results.

Publications:
V. Dobrev, T. Ellis, Tz. Kolev and R. Rieben, “Curvilinear Finite Elements for Lagrangian
Hydrodynamics”, International Journal for Numerical Methods in Fluids, 65 (11-12), pp.
1295–1310, 2011.

Tz. Kolev and R. Rieben, “A Tensor Artificial Viscosity Using a Finite Element Approach”,
Journal of Computational Physics, 228(22), pp. 8336–8366, 2009.
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